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Hydrocarbons

Halogen-substituted derivatives of hydrocarbons

Oxygen-containing organic compounds

Alkanes

Alkyl halides

Alcohols

Phenols

Ethers

Epoxides

Aldehydes

Ketones

Carboxylic acids

Alkenyl halides

Aryl halides

Alkenes

Alkynes

Dienes

Arenes

Ethanol or ethyl
 alcohol

Phenol

Epoxyethane or
 ethylene oxide or
 oxirane

Ethoxyethane or
 diethyl ether

Ethanal or acetal-
 dehyde

2-Propanone or
 acetone

Ethanoic acid or
 acetic acid

Chloroethane or
 ethyl chloride
Chloroethene or
 vinyl chloride
Chlorobenzene

Ethane

Ethene or ethylene

Ethyne or acetylene

1,3-Butadiene

Benzene

Dehydration; conversion
 to alkyl halides;
 esterification
Electrophilic aromatic
 substitution
Cleavage by hydrogen
 halides
Nucleophilic ring opening

Nucleophilic addition to
 carbonyl group

Nucleophilic addition to
 carbonyl group

Ionization of carboxyl;
 esterification

Nucleophilic substitution;
 elimination
Electrophilic addition to
 double bond; elimination
Electrophilic aromatic
 substitution; nucleophilic
 aromatic substitution

Free-radical substitution of
 hydrogen by halogen
Electrophilic addition to
 double bond
Electrophilic addition to
 triple bond
Electrophilic addition to
 double bonds
Electrophilic aromatic
 substitution

Acceptable Name(s)
of Example

Characteristic
Reaction TypeExample

H2C CH2

H2C CHCH CH2

HC CH

H2C CHCl
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Carboxylic acid derivatives

Nitrogen-containing organic compounds

Sulfur-containing organic compounds

Acyl halides

Amines

Thiols

Sulfides

Nitriles

Nitro compounds

Acid anhydrides

Esters

Amides

Ethanethiol

Diethyl sulfide

Ethanamine or
 ethylamine
Ethanenitrile or
 acetonitrile

Nitrobenzene

Ethanoyl chloride
 or acetyl chloride

Ethanoic anhydride
 or acetic anhydride

Ethyl ethanoate or
 ethyl acetate

N-Methylethanamide
    or N-methylacetamide

Acceptable Name(s)
of Example

Oxidation to a sulfenic,
 sulfinic, or sulfonic acid
 or to a disulfide
Alkylation to a sulfonium
 salt; oxidation to a
 sulfoxide or sulfone

Nitrogen acts as a base or
 as a nucleophile
Nucleophilic addition to
 carbon–nitrogen triple
 bond
Reduction of nitro group
 to amine

Nucleophilic acyl
 substitution

Nucleophilic acyl
 substitution

Nucleophilic acyl
 substitution

Nucleophilic acyl
 substitution

Characteristic
Reaction TypeExample

CH3CH2NH2

C6H5NO2

CH3CH2SH

CH3CH2SCH2CH3

CH3CCl

O

CH3COCCH3

O O

CH3COCH2CH3

O

CH3CNHCH3

O

CH3C N
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Preface

Overview
“There is a close analogy between organic chemistry in its relation to biochemistry and 
pure mathematics in its relation to physics.”

Sir Robert Robinson

This quote from Sir Robert Robinson exemplifies two broad goals in the creation 
of the twelfth edition of Francis Carey’s organic chemistry textbook. We want our stu-
dents to have a deeper understanding of the physical concepts that underlie organic 
chemistry, and we want them to have a broader knowledge of the role of organic chem-
istry in biological systems. The Carey team includes two new coauthors starting with the 
eleventh edition, Neil Allison, and Susan Bane, who have expertise in physical organic 
chemistry and in biochemistry. Significant changes in the areas of structure and mecha-
nism and in bioorganic chemistry have been incorporated into the twelfth edition. These 
and other changes are highlighted below.

Mechanism
The text is organized according to functional groups—structural units within a molecule 
that are most closely identified with characteristic properties. Reaction mechanisms are 
emphasized early and often in an effort to develop the student’s ability to see similarities 
in reactivity across the diverse range of functional groups encountered in organic chem-
istry. Mechanisms are developed from observations; thus, reactions are normally pre-
sented first, followed by their mechanism.

In order to maintain consistency with what our students have already learned, this 
text presents multistep mechanisms in the same way as most general chemistry 
textbooks—that is, as a series of elementary steps. Additionally, we provide a brief comment 
about how each step contributes to the overall mechanism. Section 1.11 “Curved Arrows, 
Arrow Pushing, and Chemical Reactions” provides the student with an early introduction 
to the notational system employed in all of the mechanistic discussions in the text.

Numerous reaction mechanisms are accompanied by potential energy diagrams. 
Section 5.8 “Reaction of Alcohols with Hydrogen Halides: The SN1 Mechanism” shows 
how the potential energy diagrams for three elementary steps are combined to give the 
diagram for the overall reaction.

Enhanced Graphics
The teaching of organic chemistry has especially benefited as powerful modeling and 
graphics software has become routinely available. Computer-generated molecular models 
and electrostatic potential maps were integrated into the third edition of this text and 
their number has increased in succeeding editions; also seeing increasing use are molecu-
lar orbital theory and the role of orbital interactions in chemical reactivity.

Coverage of Biochemical Topics
From its earliest editions, four chapters have been included on biochemical topics and 
updated to cover topics of recent interest.

▸ Chapter 23 Carbohydrates
▸ Chapter 24 Lipids
▸ Chapter 25 Amino Acids, Peptides, and Proteins
▸ Chapter 26 Nucleosides, Nucleotides, and Nucleic Acids



Generous and Effective Use of Tables
Annotated summary tables have been a staple of Organic Chemistry since the first edi-
tion. Some tables review reactions from earlier chapters, others the reactions or concepts 
of a current chapter. Still other tables walk the reader step-by-step through skill builders 
and concepts unique to organic chemistry. Well received by students and faculty alike, 
these summary tables remain one of the text’s strengths.

Problems
▸ Problem-solving strategies and skills are emphasized throughout. Understanding is 

progressively reinforced by problems that appear within topic sections.
▸ For many problems, sample solutions are given, including examples of handwritten 

solutions from the authors.
▸ The text now contains more than 1400 problems, many of which contain multiple 

parts. End-of-chapter problems are now organized to conform to the primary topic 
areas of each chapter.

Pedagogy
▸ A list of tables, mechanisms, boxed features, and Descriptive Passages and Interpre-

tive Questions is included in the front matter as a quick reference to these important 
learning tools in each chapter.

▸ Each chapter begins with an opener that is meant to capture the reader’s attention. 
Chemistry that is highlighted in the opener is relevant to chemistry that is included 
in the chapter.

▸ End-of-Chapter Summaries highlight and consolidate all of the important concepts 
and reactions within a chapter.

Audience
Organic Chemistry is designed to meet the needs of the “mainstream,” two-semester 
undergraduate organic chemistry course. From the beginning and with each new edition, 
we have remained grounded in some fundamental notions. These include important issues 
concerning the intended audience. Is the topic appropriate for them with respect to their 
interests, aspirations, and experience? Just as important is the need to present an accurate 
picture of the present state of organic chemistry. How do we know what we know? What 
makes organic chemistry worth knowing? Where are we now? Where are we headed?

Descriptive Passages and Interpretive Problems
Many organic chemistry students later take standardized pre-professional examinations 
composed of problems derived from a descriptive passage; this text includes comparable 
passages and problems to familiarize students with this testing style.

Thus, every chapter concludes with a self-contained Descriptive Passage and Inter-
pretive Problems unit that complements the chapter’s content while emulating the “MCAT 
style.” These 27 passages—listed on page xxii—are accompanied by more than 100 total 
multiple-choice problems.

The passages focus on a wide range of topics—from structure, synthesis, mecha-
nism, and natural products. They provide instructors with numerous opportunities to 
customize their own organic chemistry course, while giving students practice in combin-
ing new information with what they have already learned.

A Student-Focused Revision
Many updates have been made according to changing scientific data and are based on 
current events and reviewer feedback. The following “What’s New” summary lists the 
more major additions and refinements.
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What’s New
General Revisions
Reflecting the Diverse World Around Us
McGraw Hill believes in unlocking the potential of every learner at every stage of life. 
To accomplish that, we are dedicated to creating products that reflect, and are accessible 
to, all the diverse, global customers we serve. Within McGraw Hill, we foster a culture 
of belonging, and we work with partners who share our commitment to equity, inclusion, 
and diversity in all forms. In McGraw Hill Higher Education, this includes, but is not 
limited to, the following:
▸ Refreshing and implementing inclusive content guidelines around topics including 

generalizations and stereotypes, gender, abilities/disabilities, race/ethnicity, sexual 
orientation, diversity of names, and age.

▸ Enhancing best practices in assessment creation to eliminate cultural, cognitive, and 
affective bias.

▸ Maintaining and continually updating a robust photo library of diverse images that 
reflect our student populations.

▸ Including more diverse voices in the development and review of our content. 
Strengthening art guidelines to improve accessibility by ensuring meaningful text 

and images are distinguishable and perceivable by users with limited color vision and 
moderately low vision.
▸ Each trend is now set in a shadowbox with a clear title to highlight the importance 

of the trend and aid in student understanding. The description of the trend is placed 
at the bottom.

▸ Color has been revised for consistency in many areas to help students better under-
stand three-dimensional structure, stereochemistry, and reactions. Reaction coordi-
nate diagrams’ rate-determining steps, as well as their protonation and deprotonation 
steps, have their own consistent color. Similarly, any other reaction mechanistic steps 
are color consistent.

▸ New illustrations have also been added throughout the new edition to clarify topics 
and enhance the student learning experience. All pKa values were evaluated and 
updated.

▸ Integration values are now included in all proton NMR spectra starting with the 
Chapter 14 (Spectroscopy).

Chapter-Specific Revisions
▸ In Chapter 1, Rosalind Franklin’s important work that was critical in the discovery 

of the DNA double helix is included in the boxes essay entitled Molecular Models 
and Modeling. A new boxed essay, Curved Arrows and “Electron Pushing,” is 
included to aid in student understanding of the concept.

▸ In Chapter 3, new art was added, reinforcing the relative hydrogen positions in chair 
cyclohexane. Hydrogen and bromine values to the chair–chair interconversion table 
were added.

▸ In Chapter 4, the chirality axis section was moved to the penultimate section posi-
tion. The discussion of molecules with two chirality centers now follows the discus-
sion on enantiomers.

▸ In Chapter 12, the spin density of the benzyl radical has been added. Electron push-
ing was added into the Birch reduction (Mechanism 12.2). Lawrence Knox, a promi-
nent African-American chemist who first reported tropylium bromide, was added.

▸ The orientation of art to bond-line structures was improved in Chapters 7 (cis-2- 
butene) and 13 (acylium ion).

▸ An improved discussion of peak integration in 1H NMR in Chapter 14 was added.
▸ In Chapter 17, the discussion of the stereochemistry of the reaction of epoxides with 

nucleophiles was improved.
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▸ Chapter 18 reinforces molecular orbital descriptions in Chapters 7 and 11 by a dis-
cussion of the π molecular orbitals of the carbonyl group, while introducing the 
concept that a more electronegative oxygen’s 2p orbital is lower in energy than 
 carbon’s 2p orbital. 

▸ Chapter 20 begins with a new boxed essay emphasizing the structural reasons why 
reactions of nucleophiles with carboxylic acid derivatives yield substitution products 
compared to the addition products formed with aldehydes and ketones (Chapter 18). 
A second boxed essay recounts how Alice Ball, the first female and first African-
American graduate and faculty member at the University of Hawai’i, converted an 
oily plant extract into a form that was effectively used in the treatment of Hansen’s 
disease (leprosy). 

▸ Lipid nanoparticles are described in the context of liposomes in Chapter 24. Lipid 
nanoparticles are critical to the success of mRNA vaccines.

▸ The importance of using relative stereochemical descriptors (d,l) rather than absolute 
stereochemistry descriptors (R,S) for amino acids is explained and emphasized early 
in Chapter 25.

▸ In Chapter 26, the recent success of oligonucleotide-based drugs is highlighted in a 
new boxed essay entitled mRNA Therapeutics. Discussion of topics such as DNA 
sequencing has been updated to encompass next-generation sequencing, and outdated 
material was removed.

Instructor Resources
ALEKS (Assessment and Learning in Knowledge Spaces) is a web-based system for 
individualized assessment and learning available 24/7 over the Internet. ALEKS uses artificial 
intelligence to accurately determine a students’ knowledge and then guides them to the 
 material that they are most ready to learn. ALEKS offers immediate feedback and access to 
ALEKSPedia—an interactive text that contains concise entries on chemistry topics. ALEKS 
is also a full-featured course management system with rich reporting features that allow 
instructors to monitor individual and class performance, set student goals, assign/grade online 
quizzes, and more. ALEKS allows instructors to spend more time on concepts while ALEKS 
teaches students practical problem-solving skills. And with ALEKS 360, your student also 
has access to this text’s eBook. Learn more at www.aleks.com/highered/science
McGraw Hill Virtual Labs is a must-see, outcomes-based lab simulation. It assesses a 
student’s knowledge and adaptively corrects deficiencies, allowing the student to learn faster 
and retain more knowledge with greater success. First, a student’s knowledge is adap-
tively leveled on core learning outcomes: Questioning reveals knowledge deficiencies 
that are corrected by the delivery of content that is conditional on a  student’s response. 
Then, a simulated lab experience requires the student to think and act like a scientist: 

recording, interpreting, and ana-
lyzing data using simulated 
equipment found in labs and 
 clinics. The student is allowed to 
make mistakes—a powerful part 
of the learning experience! A 
 virtual coach provides subtle 
hints when needed, asks ques-
tions about the student’s choices, 
and allows the student to reflect 
on and correct those mistakes. 
Whether your need is to over-
come the logistical challenges of 
a traditional lab, provide better 
lab prep, improve student perfor-
mance, or make your online 
experience one that rivals the real 
world, McGraw Hill Virtual Labs 
accomplishes it all.

®

McGraw Hill
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Instructors have access to the following instructor resources:

Presentation Tools
Accessed from the Instructor Resources, Presentation Tools contains photos, artwork, 
and accessible Lecture PowerPoints that can be used to create customized lectures, visu-
ally enhanced tests and quizzes, compelling course websites, or attractive printed support 
materials. All assets are copyrighted by McGraw Hill Higher Education, but can be used 
by instructors for classroom purposes. The visual resources in this collection include:

▸ Art Full-color digital files of all illustrations in the book can be readily incorporated 
into lecture presentations, exams, or custom-made classroom materials. In addition, 
all files are pre-inserted into PowerPoint slides for ease of lecture preparation.

▸ Photos The photo collection contains digital files of photographs from the text, 
which can be reproduced for multiple classroom uses.

▸ Accessible PowerPoint® Lecture Outlines Ready-made presentations that com-
bine art and lecture notes are provided for each chapter of the text.

Also accessed through your textbook’s Instructor Resources are:

▸ Classroom Response System Questions (Clicker Questions) Nearly 600 questions 
covering the content of the Organic Chemistry text are available on the Organic 
Chemistry site for use with any classroom response system.

▸ Captioned Videos Closed-captioned videos covering the most important topics for 
Organic Chemistry are provided.

Test Bank
A test bank with over 1300 questions is available with the twelfth edition. The Test Bank 
is available in the TestGen test-generating software to quickly create customized exams.

Student Resources
Solutions Manual
The Student Solutions Manual provides step-by-step solutions guiding the student through 
the reasoning behind each problem in the text. There is also a self-test section at the end 
of each chapter that is designed to assess the student’s mastery of the material.

Schaum’s Outline of Organic Chemistry
This helpful study aid provides students with hundreds of solved and supplementary 
problems for the organic chemistry course.

Create
Your Book, Your Way
McGraw Hill’s Content Collections Powered by Create® is a self-service website that 
enables instructors to create custom course materials—print and eBooks—by drawing 
upon McGraw Hill’s comprehensive, cross-disciplinary content. Choose what you want 
from our high-quality textbooks, articles, and cases. Combine it with your own content 
quickly and easily, and tap into other rights-secured, third-party content such as readings, 
cases, and articles. Content can be arranged in a way that makes the most sense for your 
course and you can include the course name and information as well. Choose the 
best format for your course: color print, black-and-white print, or eBook. The eBook 
can be included in your Connect course and is available on the free ReadAnywhere app 
for smartphone or tablet access as well. When you are finished customizing, you 
will receive a free digital copy to review in just minutes! Visit McGraw Hill Create®— 
www.mcgrawhillcreate.com—today and begin building!



Students start your course with varying levels of preparedness. Some will get it quickly. Some won’t. ALEKS is a 
course assistant that helps you meet each student where they are and provide the necessary building blocks to 
get them where they need to go. You determine the assignments and the content, and ALEKS will deliver 
customized practice until they truly get it.  

Experience The ALEKS Difference

Easily Identify 
Knowledge Gaps  

Gain More Flexibility 
and Engagement  

Gain greater visibility into student performance so you know immediately if your 
lessons clicked. 

Teach your course your way, with best-in-class content and tools to immerse 
students and keep them on track. 

• ALEKS’s “Initial Knowledge Check” helps accurately evaluate student levels 
and gaps on day one, so you know precisely where students are at and where 
they need to go when they start your course.  

• You know when students are at risk of falling behind through ALEKS Insights 
so, you can remediate—be it through prep modules, practice questions, or 
written explanations of video tutorials.   

• Students always know where they are, how they are doing, and can track their 
own progress easily. 

• ALEKS gives you flexibility to assign homework, share a vast library of 
curated content including videos, review progress and provide student 
support, anytime anywhere.   

• You save time otherwise spent performing tedious tasks while having more 
control over and impact on your students’ learning process.   

• Students gain a deeper level of understanding through interactive and hands-on 
assignments that go beyond multiple-choice questions. 

Break down barriers and build student knowledge



Efficiently and effectively create individual pathways for students without leaving 
anyone behind.  

A dedicated Implementation Manager will work with you to build your course 
exactly the way you want it and your students need it.  

• ALEKS creates an equitable experience for all students, making  
sure they get the support they need to successfully finish the  
courses they start.   

• You help reduce attrition, falling enrollment, and further widening of the 
learning gap.  

• Student success rates improve—not just better grades, but  
better learning.

• An ALEKS Implementation Manager is with you every step of the way 
through the life of your course. 

• You never have to figure it out on your own or be your student’s customer 
service. We believe in a consultative approach and take care of all of that for 
you, so you can focus on your class.  

• Your students benefit from more meaningful in moments with you, while 
ALEKS—directed by you—does the rest. 

Already benefitting from ALEKS? 

Check out our New Enhancements:
mheducation.com/highered/aleks/new-releases.html 

Narrow the  
Equity Gap  

Count on  
Hands-on Support   

with ALEKS® Constructive Learning Paths.  
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Structure Determines 
Properties

Chemists like to call their discipline “The Central Science” 
because of its relationship to physics on one side and biology 
on the other. In the same way, among the various subdisciplines 
of chemistry, organic chemistry can be said to be central. It 
adapts the physical principles that underlie the content of gen-
eral chemistry courses to the relationships between structure 
and properties of compounds based on carbon—the most 
 versatile of all the elements.

This chapter begins your training toward understanding 
the relationship between structure and properties by reviewing 
the fundamentals of the Lewis approach to molecular structure 
and bonding and describes the various graphical ways molecu-
lar structures are presented. Principles of acid–base chemistry— 
emphasized in a quantitative way in introductory chemistry 
courses—are revisited qualitatively as a tool for introducing the 
effect of structure on properties. This structure/property rela-
tionship is what makes organic chemistry important. The same 
atom (carbon) is common to many structural types, countless 
compounds with different properties, and much variation in the 
degree to which a particular property is expressed. What is 
equally remarkable is the degree to which a relatively small 
group of principles suffice to connect the structure of a 
 substance to its properties.

A class of meteors that strikes our planet is classified as “carbonaceous.” 
They bring organic compounds with them—even compounds as 
complicated as the DNA base xanthine.
PaulFleet/iStock/Getty Images
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1.1 Atoms, Electrons, and Orbitals
Before discussing structure and bonding in molecules, let’s first review some fundamen
tals of atomic structure. Each element is characterized by a unique atomic number Z,* 
which is equal to the number of protons in its nucleus. A neutral atom has equal numbers 
of protons, which are positively charged, and electrons, which are negatively charged.

Electrons were believed to be particles from the time of their discovery in 1897 
until 1924, when the French physicist Louis de Broglie suggested that they have wavelike 
properties as well. Two years later Erwin Schrödinger took the next step and calculated 
the energy of an electron in a hydrogen atom by using equations that treated the electron 
as if it were a wave. Instead of a single energy, Schrödinger obtained a series of energies, 
each of which corresponded to a different mathematical description of the electron wave. 
These mathematical descriptions are called wave functions and are symbolized by the 
Greek letter ψ (psi).

According to the Heisenberg uncertainty principle, we can’t tell exactly where an 
electron is, but we can tell where it is most likely to be. The probability of finding an 
electron at a particular spot relative to an atom’s nucleus is given by the square of the 
wave function (ψ2) at that point. Figure 1.1 illustrates the probability of finding an elec
tron at various points in the lowest energy (most stable) state of a hydrogen atom. The 
darker the color in a region, the higher the probability. The probability of finding an 
electron at a particular point is greatest near the nucleus and decreases with increasing 
distance from the nucleus but never becomes zero.

Wave functions are also called orbitals. For convenience, chemists use the term 
“orbital” in several different ways. A drawing such as Figure 1.1 is often said to represent 
an orbital. We will see other kinds of drawings in this chapter, and use the word “orbital” 
to describe them too.

Orbitals are described by specifying their size, shape, and directional properties. 
Spherically symmetrical ones such as shown in Figure 1.1 are called s orbitals. The letter 
s is preceded by the principal quantum number n (n = 1, 2, 3, etc.), which specifies 
the shell and is related to the energy of the orbital. An electron in a 1s orbital is likely 
to be found closer to the nucleus, is lower in energy, and is more strongly held than an 
electron in a 2s orbital.

Instead of probability distributions, it is more common to represent orbitals by their 
boundary surfaces, as shown in Figure 1.2 for the 1s and 2s orbitals. The region 
enclosed by a boundary surface is arbitrary but is customarily the volume where the 
probability of finding an electron is high—on the order of 90–95%. Like the probability 
distribution plot from which it is derived, a picture of a boundary surface is usually 
described as a drawing of an orbital.

A hydrogen atom (Z = 1) has one electron; a helium atom (Z = 2) has two. The 
single electron of hydrogen occupies a 1s orbital, as do the two electrons of helium. We 
write their electron configurations as

Hydrogen: 1s1 Helium: 1s2

x

z

y

Figure 1.1
Probability distribution (ψ2) for an 
electron in a 1s orbital.

1s

x

z

y

2s

x

z

y

Figure 1.2
Boundary surfaces of a 1s orbital and  
a 2s orbital.

*A glossary of the terms shown in boldface may be found immediately before the index at the back of the book.
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In addition to being negatively charged, electrons possess the property of spin. The 
spin quantum number of an electron can have a value of either +   1 _ 2    or −   1 _ 2   . According 
to the Pauli exclusion principle, two electrons may occupy the same orbital only when 
they have opposite, or “paired,” spins. For this reason, no orbital can contain more than 
two electrons. Because two electrons fill the 1s orbital, the third electron in lithium (Z = 3) 
must occupy an orbital of higher energy. After 1s, the next higher energy orbital is 2s. 
The third electron in lithium therefore occupies the 2s orbital, and the electron configu
ration of lithium is

Lithium: 1s22s1

The period (or row) of the periodic table in which an element appears corresponds to 
the principal quantum number of the highest numbered occupied orbital (n = 1 in the 
case of hydrogen and helium). Hydrogen and helium are firstrow elements; lithium (n = 2) 
is a secondrow element.

With beryllium (Z = 4), the 2s level becomes filled and, beginning with boron 
(Z = 5), the next orbitals to be occupied are 2px, 2py, and 2pz. These three orbitals 
(Figure 1.3) are of equal energy and are characterized by boundary surfaces that are 
usually described as “dumbbellshaped.” The axes of the three 2p orbitals are at right 
angles to one another. Each orbital consists of two “lobes,” represented in Figure 1.3 
by regions of different colors. Regions of a single orbital, in this case, each 2p orbital, 
may be separated by nodal surfaces where the wave function changes sign and the 
probability of finding an electron is zero.

The electron configurations of the first 12 elements, hydrogen through magnesium, 
are given in Table 1.1. In filling the 2p orbitals, notice that each is singly occupied before 
any one is doubly occupied. This general principle for orbitals of equal energy is known as 
Hund’s rule. Of particular importance in Table 1.1 are hydrogen, carbon, nitrogen, and 
oxygen. Countless organic compounds contain nitrogen, oxygen, or both in addition to 
 carbon, the essential element of organic chemistry. Most of them also contain hydrogen.

It is often convenient to speak of the valence electrons of an atom. These are the 
outermost electrons, the ones most likely to be involved in chemical bonding and reac
tions. For secondrow elements these are the 2s and 2p electrons. Because four orbitals 
(2s, 2px, 2py, 2pz) are involved, the maximum number of electrons in the valence shell 
of any secondrow element is 8. Neon, with all its 2s and 2p orbitals doubly occupied, 
has eight valence electrons and completes the second row of the periodic table. For 
main-group elements, the number of valence electrons is equal to its group number in 
the periodic table.

Problem 1.1
How many electrons does carbon have? How many are valence electrons? What third-row 
element has the same number of valence electrons as carbon?

A complete periodic table of the 
elements is presented at the back  
of the book.

Detailed solutions to all of the 
problems are found in the Student 
Solutions Manual along with a brief 
discussion and advice on how to do 
problems of the same type.

x xx

z

y yy

zz

2px 2pz2py

Figure 1.3
Boundary surfaces of the 2p orbitals. The wave function changes sign at the nucleus. The two halves  
of each orbital are indicated by different colors. The yz-plane is a nodal surface for the 2px orbital. The 
probability of finding a 2px electron in the yz-plane is zero. Analogously, the xz-plane is a nodal surface 
for the 2py orbital, and the xy-plane is a nodal surface for the 2pz orbital.

Other methods are also used to 
contrast the regions of an orbital 
where the signs of the wave function 
are different. Some mark one lobe of a 
p orbital + and the other −. Others 
shade one lobe and leave the other 
blank. When this level of detail isn’t 
necessary, no differentiation is made 
between the two lobes.
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Once the 2s and 2p orbitals are filled, the next level is the 3s, followed by the 3px, 
3py, and 3pz orbitals. Electrons in these orbitals are farther from the nucleus than those 
in the 2s and 2p orbitals and are of higher energy.

Problem 1.2
Referring to the periodic table as needed, write electron configurations for all the elements 
in the third period.

Sample Solution The third period begins with sodium and ends with argon. The atomic 
number Z of sodium is 11, and so a sodium atom has 11 electrons. The maximum number of 
electrons in the 1s, 2s, and 2p orbitals is ten, and so the eleventh electron of sodium 
occupies a 3s orbital. The electron configuration of sodium is 1s22s22px

22py
22pz

23s1.

In-chapter problems that contain 
multiple parts are accompanied by  
a sample solution to part (a).

Organic Chemistry: The Early Days

Eighteenth-century chemists regarded their science as being 
composed of two branches. One dealt with substances 

obtained from natural or living sources and was called organic 
chemistry; the other dealt with materials from nonliving  matter—
minerals and the like—and was called inorganic chemistry. Over 
time, combustion analysis established that the compounds derived 
from natural sources contained carbon, and a new definition of 
organic chemistry emerged: Organic chemistry is the study of 
carbon compounds. This is the definition we still use today.

As the eighteenth century gave way to the nineteenth, 
many scientists still subscribed to a doctrine known as vitalism, 
which held that living systems possessed a “vital force” that was 
absent in nonliving systems. Substances derived from natural 
sources (organic) were thought to be fundamentally different 
from inorganic ones. It was believed that inorganic compounds 
could be synthesized in the laboratory, but organic compounds 
could not—at least not from inorganic materials.

In 1823, Friedrich Wöhler, after completing medical stud-
ies in Germany, spent a year in Stockholm studying under one of 
the world’s foremost chemists of the time, Jöns Jacob Berzelius. 
Wöhler subsequently went on to have a distinguished indepen-
dent career, spending most of it at the University of Göttingen. 
Wöhler is best remembered for a brief paper published in 1828 
in which it was noted that, on evaporating an aqueous solution 
of ammonium cyanate, he obtained “colorless, clear crystals 
often more than an inch long,” which were not ammonium  
cyanate but were instead urea.

NH4OCN O C(NH2)2

Ammonium cyanate
(inorganic)

Urea
(organic)

This transformation was remarkable at the time because 
an inorganic salt, ammonium cyanate, was converted to urea, a 
known organic substance earlier isolated from urine. It is now 
recognized as a significant early step toward overturning the 
philosophy of vitalism. Although Wöhler made no extravagant 
claims concerning the relationship of his discovery to vitalist 
theory, the die was cast, and over the next generation organic 
chemistry outgrew vitalism. What particularly seemed to excite 
Wöhler and Berzelius had very little to do with vitalism. Berzelius 
was interested in cases in which two clearly different materials 
had the same elemental composition, and thus invented the 
word isomers to apply to them. Wöhler’s observation that an 

inorganic compound (ammonium cyanate) of molecular formula 
CH4N2O could be transformed into an organic compound (urea) 
of the same molecular formula had an important bearing on the 
concept of isomerism.

From the concept of isomerism, we can trace the origins of 
the structural theory—the idea that a specific arrangement of atoms 
uniquely defines a substance. Ammonium cyanate and urea are 
different compounds because they have different structures.

Three mid-nineteenth-century scientists, August Kekulé, 
Archibald S. Couper, and Alexander M. Butlerov, stand out for 
separately proposing the elements of the structural theory. The 
essential features of Kekulé’s theory, developed and presented 
while he taught at Heidelberg in 1858, were that carbon nor-
mally formed four bonds and had the capacity to bond to other 
carbons to form long chains. Isomers were possible because the 
same elemental composition (say, the CH4N2O molecular for-
mula common to both ammonium cyanate and urea) accommo-
dates more than one pattern of atoms and bonds. Shortly after 
that, Couper, a Scot working at the École de Médecine in Paris, 
and Butlerov, a Russian chemist at the University of Kazan, pro-
posed similar theories.

In the late nineteenth and early twentieth centuries, major 
discoveries about atoms and electrons placed theories of 
molecular structure and bonding on a more secure, physics-
based foundation. Several of these are described at the begin-
ning of this section.

(Left & top right): David Tietz/Editorial Image, LLC; (bottom right): PjrStamps/Alamy 
Stock Photo
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Neon, in the second period, and argon, in the third, have eight electrons in their valence 
shell; they are said to have a complete octet of electrons. Helium, neon, and argon belong 
to the class of elements known as noble gases or rare gases. The noble gases are character
ized by an extremely stable “closedshell” electron configuration and are very unreactive.

Structure determines properties and the properties of atoms depend on atomic 
structure. All of an element’s protons are in its nucleus, but the element’s electrons 
are distributed among orbitals of various energy and distance from the nucleus. 
More than anything else, we look at its electron configuration when we wish to under
stand how an element behaves. Section 1.2 illustrates this with a brief review of ionic 
bonding.

1.2 Ionic Bonds
Atoms combine with one another to give compounds having properties different from 
the atoms they contain. The attractive force between atoms in a compound is a chemical 
bond. One type of chemical bond, called an ionic bond, is the force of attraction between 
oppositely charged species (ions) (Figure 1.4). Positively charged ions are referred to as 
cations; negatively charged ions are anions.

Whether an element is the source of the cation or anion in an ionic bond depends 
on several factors, for which the periodic table can serve as a guide. In forming ionic 
compounds, elements at the left of the periodic table typically lose electrons, giving a 
cation that has the same electron configuration as the preceding noble gas. Loss of an 
electron from sodium, for example, yields Na+, which has the same electron configura
tion as neon.

⟶Na(g)
Sodium atom
1s22s22p63s1

[The symbol (g) indicates that the species is present in the gas phase.]

Na+(g)
Sodium ion
1s22s22p6

e−

Electron

+

Number of electrons in indicated orbital

Element
Atomic 

number Z 1s 2s 2px 2py 2pz 3s

Hydrogen  1 1

Helium  2 2

Lithium  3 2 1

Beryllium  4 2 2

Boron  5 2 2 1

Carbon  6 2 2 1 1

Nitrogen  7 2 2 1 1 1

Oxygen  8 2 2 2 1 1

Fluorine  9 2 2 2 2 1

Neon 10 2 2 2 2 2

Sodium 11 2 2 2 2 2 1

Magnesium 12 2 2 2 2 2 2

TABLE 1.1 Electron Configurations of the First Twelve Elements  
of the Periodic Table

Cl‾Na+

Figure 1.4
An ionic bond is the force of attraction 
between oppositely charged ions. Each 
Na+ ion in the crystal lattice of solid 
NaCl is involved in ionic bonding to 
each of six surrounding Cl− ions and 
vice versa. The smaller spheres are Na+ 
and the larger spheres are Cl−.
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Problem 1.3
Species that have the same number of electrons are described as isoelectronic. What +2 ion 
is isoelectronic with Na+? What −2 ion?

A large amount of energy, called the ionization energy, must be transferred to 
any atom to dislodge an electron. The ionization energy of sodium, for example, is 
496 kJ/mol (119 kcal/mol). Processes that absorb energy are said to be endothermic. 
Compared with other elements, sodium and its relatives in group 1A have relatively 
low ionization energies. In general, ionization energy increases across a row in the 
periodic table.

Elements at the right of the periodic table tend to gain electrons to reach the electron 
configuration of the next higher noble gas. Adding an electron to chlorine, for example, 
gives the anion Cl−, which has the same closedshell electron configuration as the noble 
gas argon.

⟶Cl(g)
Chlorine atom

1s22s22p63s23p5

Cl−(g)
Chloride ion

1s22s22p63s23p6

e−

Electron

+

Problem 1.4
Which of the following ions possess a noble gas electron configuration?

 (a) K+ (c) H− (e) F−

 (b) He+ (d) O− (f)  Ca2+

Sample Solution (a) Potassium has atomic number 19, and so a potassium atom has  
19 electrons. The ion K+, therefore, has 18 electrons, the same as the noble gas argon. The 
electron configurations of both K+ and Ar are 1s22s22p63s23p6.

Energy is released when a chlorine atom captures an electron. Energyreleasing 
reactions are described as exothermic, and the energy change for an exothermic process 
has a negative sign. The energy change for addition of an electron to an atom is referred 
to as its electron affinity and is −349 kJ/mol (−83.4 kcal/mol) for chlorine.

We can use the ionization energy of sodium and the electron affinity of chlorine 
to calculate the energy change for the reaction:

Cl(g)
Chlorine atom

+ Cl–(g)+Na(g) Na+(g)
Sodium atom Chloride ionSodium ion

Were we to simply add the ionization energy of 496 kJ/mol (119 kcal/mol) for sodium 
and the electron affinity of −349 kJ/mol (−83.4 kcal/mol) for chlorine, we would 
conclude that the overall process is endothermic by +147 kJ/mol (+35 kcal/mol). The 
energy liberated by adding an electron to chlorine is insufficient to override the energy 
required to remove an electron from sodium. This analysis, however, fails to consider 
the force of attraction between the oppositely charged ions Na+ and Cl−, as expressed 
in terms of the energy released in the formation of solid NaCl from the separated 
gasphase ions:

Cl−(g)
Chloride ion

+Na+(g)
Sodium ion Sodium chloride

NaCl(s)

This lattice energy is 787 kJ/mol (188 kcal/mol) and is more than sufficient to make the 
overall process for formation of sodium chloride from the elements exothermic. Forces 
between charged particles are called electrostatic, or Coulombic, and constitute an ionic 
bond when they are attractive.

The SI (Système International 
d’Unités) unit of energy is the joule (J). 
An older unit is the calorie (cal). Many 
chemists still express energy changes 
in units of kilocalories per mole  
(1 kcal/mol = 4.184 kJ/mol).

Ionic bonding was proposed by the 
German physicist Walther Kossel in 
1916 in order to explain the ability of 
substances such as molten sodium 
chloride to conduct an electric 
current. Walther Kossel was the son of 
Albrecht Kossel, winner of the 1910 
Nobel Prize in Physiology or Medicine 
for early studies of nucleic acids.
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Problem 1.5
What is the electron configuration of C+? Of C−? Does either one of these ions have a noble 
gas (closed-shell) electron configuration?

Ionic bonds are very common in inorganic compounds, but rare in organic ones. 
The ionization energy of carbon is too large and the electron affinity too small for carbon 
to realistically form a C4+ or C4− ion. What kinds of bonds, then, link carbon to other 
elements in millions of organic compounds? Instead of losing or gaining electrons, car
bon shares electrons with other elements (including other carbon atoms) to give what 
are called covalent bonds.

1.3 Covalent Bonds, Lewis Formulas, and the Octet Rule
The covalent, or shared electron pair, model of chemical bonding was first suggested 
by G. N. Lewis of the University of California in 1916. Lewis proposed that a sharing 
of two electrons by two hydrogen atoms permits each one to have a stable closedshell 
electron configuration analogous to that of helium.

H

Two hydrogen atoms,
each with a single

electron

H

Hydrogen molecule:
covalent bonding by way of

a shared electron pair

H HH

Two hydrogen atoms,
each with a single

electron

H

Hydrogen molecule:
covalent bonding by way of

a shared electron pair

H H

The amount of energy required to dissociate a hydrogen molecule H2 to two sepa
rate hydrogen atoms is its bond dissociation enthalpy. For H2 it is quite large, amounting 
to +435 kJ/mol (+104 kcal/mol). The main contributor to the strength of the covalent 
bond in H2 is the increased Coulombic force exerted on its two electrons. Each electron 
in H2 “feels” the attractive force of two nuclei, rather than one as it would in an isolated 
hydrogen atom.

Only the electrons in an atom’s valence shell are involved in covalent bonding. 
Fluorine, for example, has nine electrons, but only seven are in its valence shell. Pairing 
a valence electron of one fluorine atom with one of a second fluorine gives a fluorine 
molecule (F2) in which each fluorine has eight valence electrons and an electron con
figuration equivalent to that of the noble gas neon. Shared electrons count toward satis
fying the octet of both atoms.

Fluorine molecule:
covalent bonding by way of

a shared electron pair

F F

Two fluorine atoms, each
with seven electrons in

its valence shell

FF

Fluorine molecule:
covalent bonding by way of

a shared electron pair

F F

Two fluorine atoms, each
with seven electrons in

its valence shell

FF

The six valence electrons of each fluorine that are not involved in bonding comprise 
three unshared pairs.

Structural formulas such as those just shown for H2 and F2 where electrons are 
represented as dots are called Lewis formulas, or Lewis structures. It is usually more 
convenient to represent shared electronpair bonds as lines and to sometimes omit elec
tron pairs.

The Lewis model limits secondrow elements (Li, Be, B, C, N, O, F, Ne) to a total 
of eight electrons (shared plus unshared) in their valence shells. Hydrogen is limited to 
two. Most of the elements that we’ll encounter in this text obey the octet rule: In form-
ing compounds they gain, lose, or share electrons to achieve a stable electron configura-
tion characterized by eight valence electrons. When the octet rule is satisfied for carbon, 
nitrogen, oxygen, and fluorine, each has an electron configuration analogous to that of 
the noble gas neon. The Lewis formulas of methane (CH4), ammonia (NH3), water (H2O), 
and hydrogen fluoride (HF) given in Table 1.2 illustrate the octet rule.

Gilbert Newton Lewis has been called 
the greatest American chemist.

Unshared pairs are also called lone 
pairs.
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With four valence electrons, carbon normally forms four covalent bonds as shown 
in Table 1.2 for CH4. In addition to CH bonds, most organic compounds contain 
covalent CC bonds. Ethane (C2H6) is an example.

or

H

H

H

H

H C C H
to write a
Lewis structure
for ethane

H

H

H

H

H C C H
Combine two
carbons and
six hydrogens

C HH C
H H

H H

Problem 1.6
Write Lewis formulas, including unshared pairs, for each of the following. Carbon has four 
bonds in each compound.

 (a) Propane (C3H8) (c) Methyl fluoride (CH3F)
 (b) Methanol (CH4O) (d) Ethyl fluoride (C2H5F)

Sample Solution (a) The Lewis formula of propane is analogous to that of ethane but the 
chain has three carbons instead of two.

Combine three carbons 
and eight hydrogens

to write a Lewis formula for propane

CC C

H H

H H H

H

H H CC C
H H

H H H

H
H H or C C C HH

H H H

HHH

The ten covalent bonds in the Lewis formula shown account for 20 valence electrons, which 
is the same as that calculated from the molecular formula (C3H8). The eight hydrogens of 
C3H8 contribute 1 electron each and the three carbons 4 each, for a total of 20 (8 from the 
hydrogens and 12 from the carbons). Therefore, all the valence electrons are in covalent 
bonds; propane has no unshared pairs.

Lewis’s concept of shared electronpair bonds allows for fourelectron double bonds 
and sixelectron triple bonds. Ethylene (C2H4) has 12 valence electrons, which can be 
distributed as follows:

Compound Atom

Number of 
valence electrons 
in atom

Atom and sufficient 
number of 
 hydrogen atoms to 
complete octet

Lewis formula

Dot Line

Methane Carbon 4 C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

Ammonia Nitrogen 5

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

Water Oxygen 6

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

Hydrogen 
fluoride Fluorine 7

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

C
H

H
H

H

N H
H

H

O HH

FH

CC
H

H
H

H H

H

H

H

N H

H

H

O HH

FH

N H

H

H

O HH

FH

TABLE 1.2 Lewis Formulas of Methane, Ammonia, Water,  
and Hydrogen Fluoride


